Visual Evidence
Increasing Usability of Systematic Reviews in Health Systems Guidelines Development

DATE: NOVEMBER 3rd, 2018
PRESENTED BY: Connor Smith, B.S., Informatics Research Associate and Rebecca Jungbauer, Dr.P.H., Research Associate
Pacific Northwest Evidence-based Practice Center
Department of Medical Informatics and Clinical Epidemiology
Disclaimer

This project was funded under Contract No. HHSA290201500009I from the Agency for Healthcare Research and Quality (AHRQ), U.S. Department of Health and Human Services (HHS). The authors of this presentation are responsible for its content. Statements in the presentation do not necessarily represent the official views of or imply endorsement by AHRQ or HHS.

We do not have any conflicts to disclose.
“Research is creating new knowledge.”

—Neil Armstrong
Integrating research and practice
Large volume of complex data

- 1,398 pages
- 300+ pages
- 1,000+ pages

- Extensive executive summary: 25 pages
- Complex evidence tables: 62 tables
- Detailed figures: 52 figures
Dissemination challenges

• Increasing dimensionality
 – 5 types of pain
 – 8 interventions
 – 6 outcomes

• Rigid structure
 – Defined scope
 – Set template
 – Research questions
Chronic pain report

- Condition → intervention → outcome

Key Question 1: Chronic Pain

Exercise for Chronic Pain

Key Points

- Exercise was associated with an attention control difference [SMD] = -0.3 were no effects on inter
- 0.48 to 0.18, I²=51%) Disability Index (ODI).
- Exercise was associated with an attention control difference of 0.81 on a 0 to 10 scale pooled MD = -1.37, 95% CI = 2.38 to -0.32 term and long-term).
- No trial evaluated exercises involving the sections for other therapies.

<table>
<thead>
<tr>
<th>Author, Year, Followup, Pain Duration, Study Quality</th>
<th>Intervention</th>
<th>Population</th>
<th>Control N Mean (SD)</th>
<th>Exercise N Mean (SD)</th>
<th>SMD (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myamoto, 2013[2]</td>
<td>A. Muscle performance (Plates) (n=43), 12 sessions over 6 weeks</td>
<td>A vs. B Age: 41.1 years Female: 40, 21% Baseline 9.7 vs. 1.1 Baseline (0-10 VA vs. 6.5)</td>
<td>77,12.2 (6.7)</td>
<td>77,10.3 (7.5)</td>
<td>0.32 (0.05, 0.64)</td>
</tr>
<tr>
<td>Goldby, 2005 AOMI</td>
<td>A. Combined exercise (n=37) (stretching, coordination, and muscle strengthening exercises), 24 sessions over 8 weeks</td>
<td>A vs. B Age: 45.1 Female: 24, 21% Baseline 13.9 vs. 1.1 Baseline (0-10 VA vs. 6.5)</td>
<td>43,3.7 (5.6)</td>
<td>43,4.5 (4.5)</td>
<td>0.00 (0.00, 0.00)</td>
</tr>
<tr>
<td>Kankaanpaa, 1999 AOMI</td>
<td>A. Exercise (Plates) (n=30), 24 sessions over 12 weeks</td>
<td>A vs. B Age: 48.1 Female: 27, 77% Baseline 1.1 vs. 1.1 Baseline</td>
<td>40,2.9 (10.5)</td>
<td>40,1.7 (10.5)</td>
<td>-0.56 (0.13, -0.03)</td>
</tr>
</tbody>
</table>

https://effectivehealthcare.ahrq.gov/topics/nonpharma-treatment-pain/research-2018
Comparing evidence

Drill down
I have a patient with chronic low back and neck pain. What is an effective treatment to help with short and intermediate-term pain?

Slice and dice
I have a patient who wants to try acupuncture to relieve chronic low back and neck pain. Will this be effective in the short and intermediate term?
Current approach

- Condition \(\rightarrow\) intervention \(\rightarrow\) outcome

<table>
<thead>
<tr>
<th></th>
<th>Chronic low back pain</th>
<th>Chronic neck pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise</td>
<td>Pages 19-25</td>
<td>Pages 97-106</td>
</tr>
<tr>
<td></td>
<td>Table 5</td>
<td>Table 18</td>
</tr>
<tr>
<td></td>
<td>Figures 4-5</td>
<td>Figures 26-27</td>
</tr>
<tr>
<td>Acupuncture</td>
<td>Appendix D: 883 pages</td>
<td>Pages 120-128</td>
</tr>
<tr>
<td></td>
<td>Appendix E: 18 pages</td>
<td>Table 23</td>
</tr>
<tr>
<td></td>
<td>Figures 30-31</td>
<td>Figures 30-31</td>
</tr>
<tr>
<td>Summary</td>
<td>Tables A-B</td>
<td>Tables C-D</td>
</tr>
<tr>
<td>Individual Studies</td>
<td>Appendices D-E</td>
<td>Appendices D-E</td>
</tr>
</tbody>
</table>
AHRQ EPC pilot projects

- **Problem**: AHRQ wants to improve accessibility and usability of evidence from systematic reviews
- **Solution**: Engage EPCs to develop and pilot test potential tools to enhance evidence uptake

- **Purpose**: Identify and test interactive methods to make the large amount of data included in an EPC systematic review more accessible for developers of clinical practice guidelines
EPC project plan

• Use published systematic review on chronic pain
• Software selection criteria
 – Existing, off the shelf product
 – No or minimal need for informatics training
• Gather feedback from guideline developers (stakeholders)
Unscrambling the eggs

- Data extracted from PDF, organized into relational structure
 - 356 rows of data, 202 different studies
 - 80% of work
- Developed report for a Guidelines Committee
DEMONSTRATION

Live Demo
Reception of Design

- Interviews with six OHSU guideline development and implementation stakeholders

Formulate specific questions based on local needs ✓

Access data simultaneously across disparate geographies ✓

Share templates across EPCs ✓

Less robust level of detail ✗

Varying levels of clinician expertise ✗

Dashboard will be project-dependent ✗
Caveats/Limitations

• Supplement, not replace
• Quantitatively focused
• Aggregation cannot be changed
• Heavy reliance on data structure
Next Steps/Call to Action

- Integration of informatics professionals
- A step towards improving dissemination
 - New ways to present data
 - Integrate pilot project into future reviews
 - Accessibility
 - Feedback from additional stakeholders
Thank You

Connor Smith
smitco@ohsu.edu

Becky Jungbauer
jungbaue@ohsu.edu

To learn more about the Pacific Northwest Evidence-based Practice Center, visit www.ohsu.edu/epc

To learn more about the Department of Medical Informatics and Clinical Epidemiology, visit www.ohsu.edu/dmice